
Methods Ecol Evol. 2017;1–12.	 wileyonlinelibrary.com/journal/mee3  |  1

 

Received: 19 November 2016  |  Accepted: 11 July 2017
DOI: 10.1111/2041-210X.12904

R E S E A R C H  A R T I C L E

Estimation of above-ground biomass of large tropical trees 
with terrestrial LiDAR

Jose Gonzalez de Tanago1,2  | Alvaro Lau1,2  | Harm Bartholomeus1 |  
Martin Herold1 | Valerio Avitabile1 | Pasi Raumonen3 | Christopher Martius2 |  
Rosa C. Goodman4 | Mathias Disney5,6  | Solichin Manuri7 | Andrew Burt5 | Kim Calders5,8

1Laboratory of Geo-Information Science and Remote Sensing, Wageningen University & Research, Wageningen, The Netherlands; 2Center for International 
Forestry Research (CIFOR), Bogor, Indonesia; 3Laboratory of Mathematics, Tampere University of Technology, Tampere, Finland; 4Department of Forest Ecology 
and Management, Swedish University of Agricultural Sciences (SLU), Umeå, Sweden; 5Department of Geography, University College London, London, UK; 6NERC 
National Centre for Earth Observation (NCEO), Leicester, UK; 7Fenner School of Environment and Society, Australian National University, Canberra, ACT, Australia 
and 8Earth Observation, Climate and Optical group, National Physical Laboratory, Teddington, UK

Correspondence
Jose Gonzalez de Tanago
Email: jose.tanago@gmail.com

Funding information
Norwegian Agency for Development 
Cooperation (Norad); Australian Department 
of Foreign Affairs and Trade (DFAT); European 
Union; International Climate Initiative (IKI) 
of the German Federal Ministry for the 
Environment, Nature Conservation, Building 
and Nuclear Safety (BMUB); CGIAR Fund; 
SilvaCarbon, Grant/Award Number: 14-IG-
11132762-350; UK NERC National Centre for 
Earth Observation (NCEO)

Handling Editor: Darren Kriticos

Abstract
1.	 Tropical forest biomass is a crucial component of global carbon emission estima-
tions. However, calibration and validation of such estimates require accurate and 
effective methods to estimate in situ above-ground biomass (AGB). Present 
methods rely on allometric models that are highly uncertain for large tropical 
trees. Terrestrial laser scanning (TLS) tree modelling has demonstrated to be more 
accurate than these models to infer forest AGB. Nevertheless, applying TLS 
methods on tropical large trees is still challenging. We propose a method to esti-
mate AGB of large tropical trees by three-dimensional (3D) tree modelling of TLS 
point clouds.

2.	 Twenty-nine plots were scanned with a TLS in three study sites (Peru, Indonesia 
and Guyana). We identified the largest tree per plot (mean diameter at breast 
height of 73.5 cm), extracted its point cloud and calculated its volume by 3D mod-
elling its structure using quantitative structure models (QSM) and converted to 
AGB using species-specific wood density. We also estimated AGB using pantropi-
cal and local allometric models. To assess the accuracy of our and allometric meth-
ods, we harvest the trees and took destructive measurements.

3.	 AGB estimates by the TLS–QSM method showed the best agreement in com-
parison to destructive harvest measurements (28.37% coefficient of variation 
of root mean square error [CV-RMSE] and concordance correlation coefficient 
[CCC] of 0.95), outperforming the pantropical allometric models tested 
(35.6%–54.95% CV-RMSE and CCC of 0.89–0.73). TLS–QSM showed also the 
lowest bias (overall underestimation of 3.7%) and stability across tree size 
range, contrasting with the allometric models that showed a systematic bias 
(overall underestimation ranging 15.2%–35.7%) increasing linearly with tree 
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1  | INTRODUCTION

The above-ground carbon in tropical forests represents 40% of the 
total carbon stocked in forests globally (Gibbs, Brown, Niles, & Foley, 
2007). However, the estimation of tropical forest carbon stocks pres-
ents large uncertainties (Mitchard et al., 2013, 2014). Forest carbon 
stocks are not measured directly, but derived either from interpola-
tion or extrapolation of point estimates of the above-ground biomass 
(AGB) contained in forest inventory plots, or from measurements of re-
mote sensing proxies calibrated with plot-based AGB estimates (Gibbs 
et al., 2007).

The only way to truly and directly measure forest AGB implies 
cutting and weighing the mass of all trees in the plot, which is costly 
and causes a negative impact, and is thus seldom executed (Clark & 
Kellner, 2012). Instead, plot AGB is estimated from aggregation of in-
dividual tree AGB estimates. These tree AGB estimates are indirectly 
derived from easily measured tree parameters (diameter at breast 
height [DBH], height and wood density derived from tree species 
identification) by means of allometric models, which relate these tree 
parameters with real tree AGB measured in destructive sampling stud-
ies (Chave et al., 2005). This indirect estimation approach introduces 
an error propagation chain. The biggest source of error is derived from 
the allometric models, hence its appropriate selection is the most 
important aspect to improve the accuracy of AGB estimates (Molto, 
Rossi, & Blanc, 2013).

The uncertainty in the tree AGB estimation is even greater for 
large tropical trees (DBH >70 cm) because AGB in large trees varies 
more than in small trees (Chave et al., 2005; Goodman, Phillips, & 
Baker, 2014; Ploton et al., 2016; Slik et al., 2013), and due to the pres-
ence of buttresses is prone to larger measurement error (Chave et al., 
2014). Moreover, it is particularly relevant to accurately estimate AGB 
of large trees because of their major influence on the tropical forest 
AGB variation (Slik et al., 2013; Stegen et al., 2011).

As an alternative, remote sensing systems can be used to esti-
mate tropical forest carbon stocks. One of the most promising remote 
sensing approaches to estimate forest AGB is via light detection and 

ranging (LiDAR), either via spaceborne platforms (e.g. ICESat), airborne 
laser scanning or terrestrial laser scanning (TLS). Laser pulses from 
LiDAR instruments can penetrate the forest canopy providing good 
estimates of forest canopy heights and structure, from which AGB 
along the vertical profile and canopy cover can be estimated (Goetz 
& Dubayah, 2011).

TLS data provide the highest level of three-dimensional (3D) de-
tail of forest and tree structure (Newnham et al., 2015). Currently, TLS 
data are being used to model 3D structure of individual trees allowing 
direct measurements of forest and tree structural parameters such as 
DBH (Bauwens, Bartholomeus, Calders, & Lejeune, 2016), tree height 
(Király & Brolly, 2007), crown dimensions (Holopainen, Vastaranta, 
& Kankare, 2011) and individual branches (Raumonen, Kaasalainen, 
Kaasalainen, & Kaartinen, 2011). Several review articles provide ad-
ditional information about the characteristics of TLS and its use for 
forestry surveying (Newnham et al., 2015).

Several approaches estimate forest AGB by exploiting the capabil-
ity of TLS data to characterize forest structure at tree level. A simple 
approach is to measure tree structural parameters from a TLS 3D point 
cloud and apply allometric models to relate the measured parameters 
with AGB (e.g. Yao et al. (2011)). However, this method still relies on 
allometric models. A different kind of approach has been developed to 
reconstruct the complete 3D tree architecture from TLS data rather 
than a single or few structural parameters. Quantitative structure 
models (QSMs; Delagrange, Jauvin, & Rochon, 2014; Hackenberg, 
Wassenberg, Spiecker, & Sun, 2015; Raumonen et al., 2013) are ar-
chitectural tree models reconstructed from the TLS point cloud of 
individual trees and allow volume measurements. The estimated tree 
volume is converted to tree AGB by multiplying it by the specific wood 
density (Calders, Newnham, et al., 2015; Hackenberg et al., 2015). 
Thus, this method estimates AGB based on the biophysical modelling 
of specific tree structure rather than the allometric models which are 
based on empirical relationships from a sample of trees and rely on a 
limited number of tree structural parameters.

The QSM reconstruction method developed by Raumonen 
et al. (2013) has been applied for wood volume estimation and AGB 

size. The TLS–QSM method also provided accurate tree wood volume esti-
mates (CV RMSE of 23.7%) with no systematic bias regardless the tree struc-
tural characteristics.

4.	 Our TLS–QSM method accounts for individual tree biophysical structure more 
effectively than allometric models, providing more accurate and less biased  
AGB estimates for large tropical trees, independently of their morphology. This non-
destructive method can be further used for testing and calibrating new allometric mod-
els, reducing the current under-representation of large trees in and enhancing present 
and past estimates of forest biomass and carbon emissions from tropical forests.

K E Y W O R D S

above-ground biomass, allometric models, LiDAR, terrestrial laser scanning, tree volume, tropical 
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estimation in boreal and temperate forest (Raumonen et al., 2015) and 
in more structurally complex tropical forests in Gabon (Disney et al., 
2014). AGB estimates derived from this approach in Australia showed 
a higher agreement with reference values from destructive sampling 
(coefficient of variation of root mean square error [CV RMSE] = 16.1%) 
compared to AGB estimates derived by allometric models (CV 
RMSE = 46.2%–57%) (Calders, Newnham, et al., 2015). However, the 
accuracy of AGB estimates in tropical forest trees has not been inves-
tigated yet with reference data.

Several challenges arise when one wants to estimate tree AGB in a 
tropical forest using QSM. First, for very large and complex trees there 
is a lack of reference data to validate the 3D reconstruction models 
from TLS. Furthermore, the structural complexity of a tropical forest 
can potentially have a large influence on acquired TLS data. This re-
quires careful design of an appropriate scanning pattern to diminish 
vegetation occlusion and to allow accurate reconstruction of the 3D 
structure of trees (Wilkes et al., 2016).

Here, we assess the potential and accuracy of volume reconstruc-
tion using QSMs for estimating AGB of large tropical forest trees. For 
this, 29 plots were scanned with TLS and one large tree per plot was 
destructively sampled afterwards. With the TLS data acquired, we 
(1) optimized the QSM tree volume reconstruction method based on 
a subsample of nine of the 29 trees. After each tree was scanned 
and harvested, we (2) performed in situ destructive measurements 
to independently estimate tree volume for comparison with model 
estimates and calculate their accuracy. Finally, using the independent 
tree dataset (remaining 20 trees non-used in point 1), we (3) com-
pared the accuracy of the AGB estimates based on QSMs with the 
accuracy of the AGB estimates based on pantropical and local allo-
metric models.

2  | MATERIALS AND METHODS

2.1 | Study area

We acquired field data from 29 plots across three tropical forest sites in 
Peru, Indonesia and Guyana. Table 1 shows the description of each site.

2.2 | TLS sampling and field data collection

Plots were established around a tree to be harvested after the 
laser scanning. Plot spatial design and tree selection are detailed in 
Appendix S1. Once the plots were set up, we scanned the plot with 
TLS, performed a forest inventory, harvested the selected tree and 
measured the geometric structure of the harvested tree.

2.2.1 | TLS data acquisition

TLS datasets were acquired using a RIEGL VZ-400 3D® terrestrial 
laser scanner (RIEGL Laser Measurement Systems GmbH, Horn, 
Austria). This scanner is a discretized multiple-return LiDAR scanner 
and its specifications are shown in Table 2. Details of the sampling 
design are described in Appendix S2.

2.2.2 | Forest inventory data collection

For each tree, we measured DBH (or diameter above buttresses), tree 
height, height of first branch and crown width. We measured DBH 
with a forestry tape and tree height with a Nikon “Forestry-Pro” 
(Hayama, Japan) laser hypsometer with precisions of 0.01 and 0.2 m 
respectively. An experienced taxonomist (specialist of the local flora) 
identified the trees at species level.

2.2.3 | Harvested tree reference measurements

We measured the geometry of the stem, buttresses and branches of 
each harvested tree. As in Figure 1(1), tree stem diameters (1a) were 

TABLE  1 Study sites description

Peruvian site Indonesian site Guyanese site

Number of plots 9 10 10

Forest type Lowland tropical moist terra  
firme forest

Peat swamp forest Lowland tropical moist 
forest

Region Madre de Dios. South western  
Amazon

Mentaya River (Central  
Kalimantan)

Vaitarna Holding’s 
concession

Lat/long −12.27 lat −69.10 long −2.41 lat 113.13 long 6.04 lat −58.70 long

Mean elevation 312 m a.s.l. 22 m a.s.l. 117 m a.s.l.

Mean yearly rainfalla 2,074 mm 2,616 mm 2,195 mm

Mean stem density (trees with diameter  
at breast height [DBH] > 10 cm)

565 stems/ha 1,314 stems/ha 516 stems/ha

Mean DBH harvested trees (SD) 90.0 cm (22.2 cm) 58.4 cm (18.2 cm) 73.7 cm (12.0 cm)

aFrom Muñoz & Grieser (Muñoz & Grieser, 2006).

TABLE  2 Terrestrial laser scanning specifications

Wavelength 1,550 nm

Beam divergence 0.35 mrad

Scan range 360° in azimuth
100° in zenith

Scan resolution 0.06°
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measured at every metre along the stem (1b) following the approach 
of Kankare et al. (2013). For trees with buttresses or major irregulari-
ties, we measured as in Figure 1(2). Finally, we measured all branches 
until tapered diameter ≤10 cm by measuring each internode indepen-
dently as in Figure 1(3).

2.3 | Volume and biomass estimation

2.3.1 | Tree wood volume estimation from 3D QSM

We co-registered each individual TLS scan into a single plot 
point cloud using RiScan Pro software (version 2.0; RIEGL Laser 
Measurement Systems GmbH, www.riegl.com) and the accuracy of 
our co-registration was kept below 1 cm.

We reconstructed the woody structure of trees using the QSM 
method developed by Raumonen et al. (2013) and further developed 
by Calders, Newnham, et al. (2015) and Raumonen et al. (2015). The 
method first segments the TLS point cloud reconstructing the whole 
tree topological branching architecture and then reconstructs the 
surface and volume of the segments by fitting cylinders to each of 
the segments (Figure 2). The resulting cylinder models are used for 
automatic calculation of the volume of the whole woody fraction of 
individual trees (trunk and branches). More details are provided in 
Appendix S3.

We filtered out cylinders with diameter <10 cm from result-
ing QSMs to be consistent with the reference volume estimation 
and we calculated the total tree volume by summing the volume 

of all remaining cylinders. Due to the random generation of the 
QSM patches (point cloud partition into small segments) (Calders, 
Newnham, et al., 2015; Raumonen et al., 2015), for each parameter 
set used we reconstructed 20 QSMs and averaged the volume of the 
20 model realizations.

2.3.2 | Sensitivity analysis and independent 
estimation of QSM accuracy

We split our tree population into two independent sub-datasets using 
stratified random sampling without replacement: a tree dataset of nine 
trees (three from each study area) for the sensitivity analysis of a QSM 
parameter value, and a second tree dataset of 20 trees (the remaining 
six trees for Peru and seven for Guyana and Indonesia) for independ-
ent estimation of tree volume and AGB estimates accuracy.

The reconstruction of the QSMs requires a few input parame-
ters, of which the size of the point cloud segments—expressed by the 
“surface patches diameter” (hereafter “PatchDiam”)—had the most in-
fluence on the outcome (Calders, Newnham, et al., 2015). A detailed 
explanation of the QSM parameters and QSM sensitivity to them is 
provided in the Supporting Information and in Raumonen et al. (2013, 
2015) and Calders, Newnham, et al. (2015).

Our sensitivity analysis consisted of the evaluation of the QSMs 
optimal PatchDiam value, which gives the most accurate volume esti-
mate among the different PatchDiam values tested (1, 2.5, 5, 7.5, 10 
and 15 cm). For each tree in the sensitivity analysis tree dataset, we 
compared the mean estimated volume (from the 20 QSM realizations 
per PatchDiam) against the tree volume obtained from the destruc-
tive measurements. We computed tree volume estimation RMSE. The 
optimal PatchDiam was chosen as the one that minimized the RMSE.

Once the optimal PatchDiam was found, we assessed the sta-
bility of the optimization procedure. We replicated the stratified 

F IGURE  1 Tree geometry measurements. (1) Stem diameter (1a) 
every metre (1b) until start of first branch. For trees with buttresses 
(2): diameter in two orthogonal directions (2a) and for each buttress 
horizontal length (from the furthest point to the stem) (2b); width 
(mean width between the tip and the buttress intersection with 
the stem) (2c); and height (from the ground to the highest insertion 
point of the buttress into the stem) (2d). For branches (3): proximal 
diameter at the base of each internode and above flaring (3a), 
distal diameter at the tip of each internode and below flaring of the 
next node (3b) and branch length from the base to the tip of each 
internode (3c)

2b
2d

(2)

3a 3b
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F IGURE  2 Example of one tree terrestrial laser scanning point 
cloud from Guyana dataset (left, in dark red), and the same tree 
modelled by quantitative structure models (right, in green). Figure 
from Gonzalez de Tanago et al. (2016)

http://www.riegl.com
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random sampling 1,000 times and analysed the frequency of optimal 
PatchDiam’s obtained (the one providing the smallest RMSE in each 
of the 1,000 samples) as well as the variability of the RMSE results 
(range, mean and standard deviation) for all samples with a given  
optimal PatchDiam.

Finally, the optimized PatchDiam was used to run QSM for the in-
dependent estimation dataset (20 trees) and to calculate the tree vol-
ume following the same procedure described above. We used matlab 
(The MathWorks Inc. 2014) for QSM reconstruction and “r” (R Core 
Team 2013) for further calculations.

2.3.3 | Tree volume estimation from reference 
measurements

We used the reference geometric measurements (Section 2.2.3) 
from each harvested tree to determine the tree reference vol-
ume. We applied the Smalian formula as in Nogueira, Nelson, and 
Fearnside (2005) to estimate volume of stem sections and individual 
branches until 10 cm diameter, while for the buttresses we applied 
a general prism volume formula. Detailed information can be found 
in Appendix S4. Total tree wood volume was calculated as the sum 
of volumes of main stem, large branches (>10 cm diameter) and 
buttresses.

As in Berger, Gschwantner, McRoberts, and Schadauer (2014), 
any misrepresentation of the main stem and branches volumes by the 
Smalian approximation and any measurement error taken were consid-
ered negligible and ignored. Furthermore, the sum of all cylinders was 
assumed to represent the true tree volume with no error and that the 
wood volume was measured without error.

2.3.4 | Tree AGB estimation from volume models and 
wood density

We calculated individual tree AGB by multiplying individual tree wood 
volume estimates by the specific basic wood density (ρ). Values of ρ 
were assigned to the finest taxonomic level possible (species, genus or 
family) according to the Global Wood Density Database (Chave et al., 
2009; Zanne et al., 2009) and tree species identified in the field. We 
applied an expansion factor accounting for small branches (≤10 cm di-
ameter). The expansion factor related the volume of small branches to 
the one of the large branches (>10 cm diameter). We calculated an ex-
pansion factor of 0.255 using data from biomass destructive sampling 
of 51 trees in a nearby Peruvian Amazon forest site (Goodman, Phillips, 
& Baker, 2013; Goodman et al., 2014). We used the same value for 
Peru and Guyana (0.255), while we calculated the expansion factor for 
Indonesia (0.28) from our own collected data. The final contribution of 
small branches to tree volume was 10%, 14% and 7% for Guyana, Peru 
and Indonesia respectively.

2.3.5 | Tree AGB estimation from allometric models

We estimated AGB using 12 allometric models, of which eight 
were locally calibrated and four pantropical (see Appendix S5). 

The pantropical allometric models used were developed by Chave 
et al. (2005), which have been recently improved (Chave et al., 
2014).

The local allometric models used for the Peruvian trees were 
developed by Goodman et al. (2014), while allometric models for 
Indonesian trees were developed by Manuri et al. (2014) and Jaya, 
Siregar, Daryono, and Suhartana (2007). No suitable local allometric 
model could be found for Guyana. The details of the allometric mod-
els used to estimate AGB for the harvested trees are described in the 
Supporting Information.

2.4 | AGB estimation models accuracies and 
uncertainty assessment

We used the 20 trees in the dataset reserved for the independent 
estimation to compare the accuracy of AGB estimates from our TLS–
QSM approach (against reference AGB) vs. the accuracy obtained 
from allometric models (against reference AGB). The model error was 
calculated for each tree and for the mean of the 20 trees using several 
metrics. The AGB estimation error (residual, in Mg) (Equation 1) and 
individual tree relative error (in %) (Equation 2) were calculated for 
each tree, while model bias (in %) (Equation 3) was calculated as the 
mean of the estimation errors divided by the mean of reference AGB.

where AGBmodel is the AGB estimated by the model and AGBref is the 
AGB observed (AGB calculated from destructive measurements).

As general indicators of model accuracy, RMSE (in m3 and Mg), CV 
RMSE (in %) and mean relative error (in %) were calculated. Slope and 
intercept values of orthogonal regression models between AGB mod-
elled and reference values were used to identify departure from the 
1:1 line, and the R-squared (hereafter R2) was used to judge the fitting 
of these regressions. Finally, the concordance correlation coefficient 
(CCC) was calculated to compare agreement of AGB model estimates 
with AGB reference and to previously reported agreement using the 
QSM method (Calders, Newnham, et al., 2015).

To assess the uncertainty in the tree AGB estimations, we used the 
error propagation approach (Equation 4) to account for the uncertain-
ties in the models components. We combined them and assumed that 
the uncertainties were statistically independent (not correlated and 
with a Gaussian distribution). We used Equation 4 expressing model 
uncertainties in percentage terms:

where Utotal is the propagated uncertainty (as percentage) from the 
model components, U1 and U2 are the uncertainties (as percentage) 
from each component (IPCC 2006).

(1)AGBestimation errors(Mg)=AGBmodel−AGBref

(2)Erelative(%) =

(

AGBmodel − AGBref

AGBref

)

×100

(3)Modelbias(%) =

�

∑n

1
AGBestimation errors ÷ n

Mean AGBref

�

×100

(4)Utotal =

√

U2

1
+ U2

2
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For AGB estimations from QSM volume models, the model uncer-
tainty components considered were the wood volume and wood density. 
The uncertainty in tree wood volume by QSM is provided by the standard 
deviation of the 20 QSM realizations per tree. For the estimation of wood 
densities uncertainties, we assumed for all species the same standard de-
viation of 10% of the mean as used by Chave et al. (2004). Likewise, to 
assess the uncertainty in the tree AGB estimation from allometric models, 
we used the uncertainties reported for each model (see Appendix S5). To 
assess the uncertainty in the tree AGB estimation from reference volume 
estimates, we considered two components: wood density (as described 
for QSM) and expansion factor. For the expansion factor, we assumed an 
error of 12.5% as reported in Segura and Kanninen (2005).

3  | RESULTS

3.1 | Tree volume estimation with QSM

The results of the tree volume modelling with the TLS–QSM approach 
are divided into two steps: (1) QSM sensitivity analysis with nine trees 
to determine QSM optimal parameters and then (2) an independent 
assessment of the tree volume estimation accuracy with an independ-
ent sample of 20 trees.

3.1.1 | Sensitivity analysis of QSM tree volume modelling

The TLS–QSM tree volume estimation error (RMSE) when compared 
with the reference volume measurements decreased with decreasing 
PatchDiam (Table 3) until it reached a minimum error for PatchDiam 
of 2.5 cm, and then it increased again for smaller PatchDiam. This 
is in line with the results of the sensitivity analysis in Calders, Burt, 
et al. (2015) and Calders, Newnham, et al. (2015). Therefore, 2.5 cm 
was considered the optimal PatchDiam, and thus selected for the 
tree volume estimation of the remaining tree dataset.

The stability assessment of PatchDiam optimization procedure 
showed that in 75% of the 1,000 random sampling replicates the 
optimal PatchDiam was 2.5 cm. Despite the relatively small sample 
reserved for the sensitivity analysis (9 out of 29 trees), the optimal 
PatchDiam was relatively stable regardless of the characteristics of the 
randomly selected trees.

3.1.2 | Independent assessment of tree volume 
estimation from TLS–QSM

To assess the accuracy of the tree wood volume estimation by the 
TLS–QSM, we compared the volume estimates by the TLS–QSM 
with the reference volume estimates from destructive measurements 
(Figure 3).

The R2 of the linear model describing the agreement of both data-
sets (Figure 3 blue line) was 0.9. Its slope was 0.93 indicating that 
the QSMs slightly underestimated the tree volume for the largest 
trees. The RMSE was 3.29 m3, compared with the mean tree volume 
of 15.13 m3, leading to a CV RMSE of 23.7%. Figure 3 shows that 
the TLS–QSM performed similarly throughout the three different 
sites, despite the three study areas contained different tree species, 
sizes and shapes. Results differ between “small trees” (DBH ≤ 70 cm, 
corresponding approximately with 9 Mg, hereafter small trees) and 
“large trees” (DBH > 70 cm, hereafter large trees). For small trees—
which were mostly part of the Indonesian dataset—TLS–QSM models 
showed less uncertainty and less deviation from the reference com-
pared to large trees.

On the other hand, the analysis of the residuals (Figure 4) reveals 
that for small trees and large trees the model did not systematically tend 
to overestimate nor underestimate the volume. Despite the larger un-
certainty in the volume estimation for large trees, there was no large 
systematic bias for larger tree size (Figure 4).

Buttresses were predominately absent in small trees, which had a 
better agreement with the reference data than trees with buttresses. 

TABLE  3 QSM volume sensitivity analysis

PatchDiam 
(cm) RMSE (m3) CV RMSE (%)

Mean relative 
error (%)

1.0 3.42 27.56 10.31

2.5 2.98 23.92 17.67

5.0 4.60 36.97 31.87

7.5 7.11 57.17 49.42

10.0 9.06 72.81 65.07

15.0 13.32 107.09 98.05

PatchDiam, surface patches diameter; QSM, quantitative structure models; 
CV RMSE, coefficient of variation of root mean square error.

F IGURE  3 Scatterplot of tree volume estimation by terrestrial 
laser scanning–quantitative structure models (QSM; y-axis) against 
reference measurements (x-axis). The solid black line depicts the 
1:1 line. Error bars are the standard deviation of the 20 QSM model 
realizations per tree. Symbols and colours denote values per study 
site. The blue line depicts the fitted linear regression model between 
QSM volume estimates and reference volume estimates, and grey 
bands show the 95% confidence interval of this regression. Coefficient 
“a” denotes tree with buttresses and “b” tree with no buttresses
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Our QSM modelling did not perform a detailed buttress modelling, but 
a cylinder fitting, which might be the cause of the higher residuals in 
the trees with buttresses.

3.2 | Comparison of AGB estimation accuracies: 
TLS–QSM vs. allometric models

3.2.1 | Overall accuracy across study sites: TLS–
QSM vs. pantropical allometric models

Figure 5 shows the agreement between the AGB estimates by TLS–
QSM and allometric models (modelled) and derived from the destruc-
tive measurements (reference) for the independent assessment tree 
dataset. The high level of agreement with the AGB-reference provided 
by the TLS–QSM approach (CCC = 0.95) contrasts with the system-
atic AGB underestimation of the allometric models for large trees 
(CCC = 0.73–0.89).

Table 4 shows the statistical indicators of the accuracy of AGB es-
timations based on the TLS–QSM approach and pantropical allometric 
models for the mean of the 20 trees in the independent assessment 
dataset.

The TLS–QSM method had the lowest RMSE, which was 20% and 
almost 50% lower than the most accurate (Chave05.m.1.3) and the 
least accurate allometric model (Chave14.eq.4) respectively. The TLS–
QSM approach also had the lowest bias, 75% and 90% lower than 
the most and the least accurate allometric models respectively. The 
TLS–QSM AGB estimates also showed the most consistent agreement 
with the reference AGB (CCC = 0.95) along the range of AGB refer-
ence values with no major systematic deviation to the 1:1 line (slope 
of 1.06), whereas the best allometric model (slope of 0.77) showed 
a systematic increasing underestimation of AGB for large trees and a 
lower agreement with reference AGB (CCC = 0.89). The trend of sys-
tematic increasing underestimation of AGB for larger trees was even 
more pronounced for less accurate allometric models (slopes ranging 
from 0.66 to 0.60) showing a lower agreement compared to reference 
AGB (CCC = 0.73–0.82).

3.2.2 | Overall accuracy within study sites: TLS–
QSM vs. local allometric models

Figure 6 displays the agreement between the AGB-modelled based on 
the TLS–QSM approach and local allometric models (y-axis) against 
AGB-reference (x-axis) for the sites where local allometric models were 
available.

For the Peruvian study area the TLS–QSM approach is the clos-
est to the 1:1 line, whereas the deviation from the 1:1 line is clearly 
larger for the three local allometric models tested, which systemati-
cally underestimate the AGB of large trees. The TLS–QSM approach 
showed 10% and 50% lower RMSE and 80% and 85% lower bias than 
the most- and least-accurate local allometric models. The agreement 
between TLS–QSM estimates and reference values expressed as CCC 
is higher (0.96) compared to the most- and least-accurate allometric 
models (0.76–0.92; Table 5).

For the Indonesian study area, unlike for the Peruvian site, the 
local allometric models showed lower RMSE and bias than the TLS–
QSM for this particular subset of trees. The best local allometric model 
had a 44% smaller RMSE than the TLS–QSM, was closer to the 1:1 line 
and had a higher agreement with reference values (CCC = 0.96) than 
our approach (0.92) (Table 6).

F IGURE  4 Analysis of volume estimation residuals. Trees with 
diameter at breast height (DBH) ≤ 70 cm were classified as small size 
trees (red colour) and trees with DBH > 70 cm were classified as large 
trees (blue colour). Coefficient “a” denotes tree with buttresses while 
coefficient “b” denotes absence of tree buttresses
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F IGURE  5 Scatterplot of above-ground biomass (AGB) estimates 
by terrestrial laser scanning–quantitative structure models (TLS–
QSM) approach and pantropical allometric models (y-axis) against 
the AGB reference values (x-axis). The 1:1 line is depicted as a 
black solid line. The dashed lines represent the fitted orthogonal 
models between AGB estimates by TLS–QSM or pantropical 
allometric models and AGB reference, with colours corresponding 
the colour used for the model estimates. Vertical bars show the 
estimated uncertainty (standard deviation) for each model estimate 
and horizontal bars show the uncertainty for the reference AGB 
estimates
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4  | DISCUSSION

4.1 | Consistent and accurate AGB estimation of 
tropical trees from QSMs

We found that the TLS–QSM approach can provide reliable and ac-
curate AGB estimates for large tropical trees (DBH > 70 cm), outper-
forming the accuracy of all the pantropical allometric models tested. 
To the best of our knowledge, this is the first study assessing the ac-
curacy of tropical trees AGB estimates using QSMs from TLS point 
clouds of trees across different tropical forest regions. A previous 

study by Disney et al. (2014) presented a proof of concept for the use 
of TLS–QSM for tree AGB estimation of tropical trees in Gabon, but 
in their research no tropical trees were harvested, thus the accuracy 
of its AGB estimates could not be assessed but only compared to the 
AGB estimates provided by allometric models. Our study showed that 
AGB estimations by allometric models often are not a reliable indica-
tor of AGB for large tropical trees. This issue was also addressed by 
Clark and Kellner (2012), Calders, Newnham, et al. (2015) and Ploton 
et al. (2016). Clark and Kellner (2012) and Calders, Newnham, et al. 
(2015) both noted that large trees are under-represented in calibration 

TABLE  4 Accuracies of AGB estimations across sites by the TLS–QSM approach and by pantropical allometric models

Model
RMSE  
(Mg)

CV RMSE  
(%) Bias (%)

Relative 
error (%) R2 Slope

Intercept  
(Mg) CCC

TLS–QSM 2.89 28.37 −3.68 −0.33 0.90 1.06 −1.03 0.95

Chave05.m.1.3a 3.63 35.60 −15.22 −0.76 0.88 0.77 0.82 0.89

Chave14.eq.7 4.52 44.35 −24.50 −10.49 0.88 0.66 0.94 0.82

Chave05.m.1.6 5.47 53.65 −34.99 −24.91 0.85 0.62 0.33 0.75

Chave14.eq.4b 5.60 54.95 −35.67 −24.41 0.85 0.60 0.49 0.73

Sample size = 20 trees.
AGB, above-ground biomass; CCC, concordance correlation coefficient; CV RMSE, coefficient of variation of root mean square error; TLS–QSM, terrestrial 
laser scanning–quantitative structure models.
aMost accurate allometric model.
bLeast accurate allometric model.

F IGURE  6 Scatterplot of above-ground biomass (AGB) estimates by terrestrial laser scanning–quantitative structure models (TLS–QSM) 
approach and local allometric models (y-axis) against the AGB reference values (x-axis) for Peruvian study site (left) and Indonesian study site 
(right). The 1:1 line is depicted as a black solid line. The dashed lines represents the fitted orthogonal models between AGB estimates by TLS–
QSM or local allometric models and AGB reference, with colours corresponding the colour used for the model estimates. Vertical bars show the 
estimated uncertainty (standard deviation) for each model estimate and horizontal bars show the uncertainty for the reference AGB estimates. 
Grey box on the left graph shows where the Indonesian values would fit in the Peruvian graph
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of allometric models, therefore these models may produce large abso-
lute errors for large trees, which is supported by our findings. Ploton 
et al. (2016) identified an increase in the estimation error of pantropi-
cal allometric models with the increase of tree mass. Clark and Kellner 
(2012) also point out that large trees inherently span a larger range of 
AGB values for a given DBH, thus exacerbating this problem of under 
sampling.

4.1.1 | AGB estimations by TLS–QSM vs. pantropical 
allometric models

Across the three sites the TLS–QSM method to estimate AGB was 
more accurate than the most accurate pantropical allometric model 
evaluated (Chave05 m1.3, in Appendix S5), with an absolute improve-
ment of 7.2% less CV RMSE (Table 4). This accuracy improvement was 
even more pronounced in terms of bias reduction. Moreover, TLS–
QSM showed a higher agreement with reference values (CCC = 0.95) 
compared to the most accurate pantropical allometric model 
(CCC = 0.89). Calders, Newnham, et al. (2015) found a comparable 
trend of higher accuracy for their TLS–QSM method in relation to allo-
metric models for estimating AGB of eucalyptus trees in Australia. The 
accuracy of the AGB estimates by TLS–QSM in our study was lower 
than the accuracy reported by Calders, Newnham, et al. (2015), and 
our agreement (CCC = 0.95) was lower than the agreement found by 
Calders et al. (CCC = 0.98). This is likely due to the greater structural 
complexity and vegetation occlusion of the tropical very dense forest 
in our study areas compared to the open eucalyptus forest studied 
by Calders, Newnham, et al. (2015). In relation to the updated and 

widely used pantropical allometric models of Chave et al. (2014), our 
method achieved an absolute improvement of 16% and 27% lower CV 
RMSE, which is comparable to the error decrease reported by Calders, 
Newnham, et al. (2015).

It should be noted that the models accuracies were estimated by 
comparing each model AGB estimates with AGB reference estimates 
derived from destructive geometric measurements, rather than with 
AGB weighted. The uncertainties introduced in measuring stems, 
buttresses and branches volumes were taken into account, but—as in 
Kankare et al. (2013) and Berger et al. (2014)—the uncertainty due to 
the use of Smalian formula for estimating true volume was assumed 
to be negligible. Furthermore, the uncertainty introduced in the cor-
rection factor for small branches volume and in the application of a 
single species-specific wood density value for each tree instead of 
discriminating wood density for different woody fractions, both were 
not measured but taken from literature. Moreover, models uncer-
tainties increasing with tree size indicates heteroscedasticity effects, 
which should be considered with caution when developing allometric 
models. This reinforces the need for improved methods for estimat-
ing large trees biomass, and for further research with larger datasets 
to assess the uncertainty on large trees biomass estimation.

4.1.2 | AGB estimations by QSM models vs. local 
allometric models in Indonesia and Peru

The TLS–QSM method also produced AGB estimates more accu-
rate than the local allometric models for the Peruvian dataset, with 
a higher agreement (CCC = 0.96) with reference data than the local 

TABLE  5 Accuracies of AGB estimations for Peruvian trees, by the TLS–QSM and by local allometric models

Model
RMSE  
(Mg)

CV RMSE  
(%) Bias (%)

Relative 
error (%) R2 Slope

Intercept  
(Mg) CCC

TLS–QSM 3.68 24.27 3.72 −3.87 0.93 1.16 −1.84 0.96

Goodman.II.1a 4.09 26.97 −18.37 −16.87 0.97 0.78 0.54 0.92

Goodman.I.1.CRb 7.27 47.98 −26.2 −6.42 0.94 0.54 3.19 0.76

Sample size = 6 trees.
AGB, above-ground biomass; CCC, concordance correlation coefficient; CV RMSE, coefficient of variation of root mean square error; TLS–QSM, terrestrial 
laser scanning–quantitative structure models.
aMost accurate allometric model.
bLeast accurate allometric model.

TABLE  6 Accuracies of AGB estimations for Indonesian trees, by TLS–QSM approach and by local allometric models

Model
RMSE  
(Mg)

CV RMSE  
(%) Bias (%)

Relative 
error (%) R2 Slope

Intercept  
(Mg) CCC

TLS–QSM 1.67 37.13 21.36 19.08 0.96 1.29 −0.34 0.92

Manuri.DBH.WD.H.mixa 0.94 20.82 0.63 11.88 0.94 0.88 0.58 0.96

Jaya07b 1.52 33.93 −19.33 −12.12 0.95 0.71 0.41 0.89

Sample size = 7 trees.
AGB, above-ground biomass; CCC, concordance correlation coefficient; CV RMSE, coefficient of variation of root mean square error; TLS–QSM, terrestrial 
laser scanning–quantitative structure models.
aMost accurate allometric model.
bLeast accurate allometric model.
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allometric models in Peru (CCC = 0.76–0.92). However, several local 
allometric models outperformed our method for the Indonesian data-
set, which trees were predominately smaller than 10 Mg. In this case, 
several local allometric models had better agreement, ranging from 
0.89 to 0.96, while TLS–QSM approach had an agreement of 0.92.

For both cases, at pantropical or regional–local level, there are 
large implications related to the choice of which allometric model 
one should use for AGB estimation of tropical trees. While some al-
lometric models presented here performed with similar accuracy than 
our method for some trees; other allometric models proposed for the 
same region and by the same authors provided significantly larger er-
rors on the same trees.

4.2 | Reconstructing 3D woody structure of tropical 
forest trees using QSMs

We showed that the TLS–QSM method can be used to accurately 
estimate volume from 3D reconstructed structure of large tropical 
trees from scans in very dense forest with leaf-on conditions. The 
tree structure reconstructions for these large tropical trees contained 
larger uncertainty (higher variance on the QSM outcomes) than in pre-
vious studies (Calders, Newnham, et al., 2015; Calders et al., 2013; 
Raumonen et al., 2015) which evaluated smaller trees and were located 
in more open forest conditions and less occluded trees. For the small-
est trees in our study, the 3D reconstruction uncertainty values were 
closer to those previously reported by Calders, Newnham, et al. (2015).

Consistent with previous QSM studies (Calders, Newnham, 
et al., 2015; Calders et al., 2013; Disney et al., 2014; Raumonen 
et al., 2013), we optimized the reconstruction process based on the 
PatchDiam parameter, which was reported to be the most influential 
parameter (Calders et al., 2013). The main difference compared to 
Calders, Newnham, et al. (2015) is in the method for judging the opti-
mal reconstruction.

Our sample of tropical trees was characterized by being among the 
most challenging conditions for a 3D tree reconstruction method be-
cause the target trees were among the tallest trees in each plot and 
having the largest crown size and complexity. The combination of 
these limiting factors contributes to increased occlusion, in combina-
tion with very dense understorey, resulting in under-sampled areas in 
the tree crowns and larger uncertainties in the QSM reconstructions. 
For these low-density point cloud areas the QSMs presented some un-
realistic branching reconstructions. The low-density point cloud issue 
was also addressed by Raumonen et al. (2011, 2013). They stated that 
the reconstruction method was quite sensitive to low point cloud den-
sity and therefore, reliability of cylinders reconstructing small branches 
could be very low. Therefore, we discarded all branches with a diameter 
<10 cm and applied the expansion factor to account for their volume.

Alternatively, Calders, Burt, et al. (2015) recently proposed an auto-
mated method for QSM parameterization. This method optimized the 
PatchDiam value based on the maximum match of QSM cylinders di-
ameter with point cloud circle fitting diameter at four different heights 
along the main trunk. This approach focuses on comparing the recon-
structed main trunk, regardless of the quality of the reconstructed tree 

crown. However, recent studies (Goodman et al., 2014; Ploton et al., 
2016) showed the important contribution of the crown biomass to the 
total tree biomass for large tropical trees. Similarly, for the trees in our 
study, the crown contribution to the total tree biomass was 50% on 
average and even larger for the trees above 10 Mg (60% of the total 
tree biomass). Therefore, we decided not to implement the method of 
Calders, Newnham, et al. (2015) for our study.

Future research should focus on developing an automated QSM 
optimization which optimizes the reconstruction of the entire tree and 
does not focus on the tree trunk alone. Automated optimization of this 
sort might enable to improve even further the accuracy of tree volume 
and AGB estimates of tropical trees from TLS data at large scale with-
out harvesting trees.

5  | CONCLUSIONS

We present an approach to estimate tree wood volume and AGB 
for large tropical trees that relies on estimates of tree volume 
based on 3D data from TLS and basic wood density. We show that 
tree volume estimation of these large tropical trees based on TLS 
data and QSM provided a CV RMSE of 23.7% in comparison to 
destructive harvest measurements. Tree AGB estimates derived 
from TLS–QSM provided better agreement with AGB reference 
data (28.4% CV RMSE, CCC = 0.95) than AGB estimates based on 
traditional forest inventory data and pantropical allometric models 
(33.5%–54.9% CV RMSE, CCC = 0.73–0.82). The allometric mod-
els considered in this study showed a systematic underestimation 
for large trees (DBH > 70 cm), increasing with tree size, contrast-
ing with the largely smaller and non-systematic deviation for the 
TLS–QSM.

It is important to remark that our results are based on a limited 
sample size of 29 trees across three ecosystems, while Calders, 
Newnham, et al. (2015) harvested 65 trees in one ecosystem. Despite 
this, our results confirmed a recent trend showing that TLS scanning 
and QSM are able to account for individual tree structure more ef-
fectively than allometric models, thus providing tree volume and AGB 
estimates which are likely to be unbiased by tree size.

This approach can be further used for testing and calibrating 
new allometric models, since allometric models often have large 
absolute errors for large trees, which are usually underrepresented 
in destructive sampling studies. This opens up the opportunity for 
QSMs derived from TLS measurements to be used in the future for 
building improved allometric models that might enhance present 
and past estimates of forest biomass and carbon emissions from 
tropical forest.
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